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Class-B Power MMIC Amplifiers with
70 Percent Power-Added Efficiency
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MEMBER, IEEE, CONSTANTINE ANDRICOS, AND THOMAS F. BRUKIEWA, MEMBER, IEEE

Abstract — C-band monolithic amplifiers using high-efficiency, class-B
MSAG processing have been designed, fabricated, and tested. The class-B
single-ended amplifier design employed reactive termination for higher
order harmonics and achieved state-of-the art efficiency of 70 percent with
associated gain of 8 dB and output power of 1.7 W over the 5-6 GHz
band.

I. INTRODUCTION

HERE IS a great deal of interest in finding efficient,

reliable, and low-cost power sources for the T/R
modules used in phased array antennas. Many companies
have designed high-power MMIC amplifiers in order to
meet this challenge. We have developed [1] a single-chip 10
W class-A power MMIC amplifier demonstrating state-of-
the-art performance with 5 dB gain and 36 percent power-
added efficiency at 5.5 GHz. We also achieved 17 W
power ouf, 4.5 dB gain with 32 percent power-added
efficiency, by combining these two chips usmg external
combiners.

However, the need to reduce prime power and cooling
requirements for large antenna arrays puts a tremendous
premium on achieving significantly higher power-added
efficiency, Accordingly, we have investigated class-B am-
plifiers which have the following potential advantages
compared to class A:

® Higher power-added efficiency.

® Negligible power dissipation at no RF power.

* Under backoff, the efficiency of the class-B amplifier
does not degrade as rapidly as that of the class-A
amplifier.

* A dynamic range of about 10 dB over which the
power-added efficiency is greater than 40 percent and
the gain is almost constant.

High-efficiency hybrid class-B power amplifiers have
been reported in the literature [2]-[9]. Power-added effi-
ciency (PAE) of 45 percent with associated gain of 5.4 dB
over the 9.2-10.2 GHz band was achieved for a 2 W
push—pull power amplifier [5]. For harmonic reaction am-
plifiers the PAE obtained was 75 percent with 2.7 W
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output power and 9 dB gain at 1.7 GHz [6], while a 5 W
amplifier demonstrated 70 percent PAE with 9 dB gain at
2 GHz [7]. An X-band power amplifier using a harmonic
tuning technique has achieved 5 W of output power with
6 dB gain and 36 percent PAE at 10 GHz [8]. A quasi-
monolithic 4 GHz power amplifier has demonstrated 65
percent PAE, 1 W power output, and 10 dB gain [10].

This paper describes the design, fabrication, and test
results of a fully monolithic class-B power amplifier with
70 percent PAE at C-band. In addition to discussing
power output, gain, and PAE as a function of input
power, drain-source voltage, and gate—source voltage, this
paper includes data on noise figure, AM to PM conver-
sion, and second- and third-harmonic generation.

II. MoODELS FOR CLASS-B PowEer FET’s

The FET used in our class-B power amplifiers has a 2.5
mm gate periphery. This device employs two plated-
through source vias for low-inductance source grounding
and good heat sinking. The FET’s are biased near pinch-off
at a drain-source current of 5 percent I,g and a
drain—source voltage of 12 V.

An innovative method has been developed at the ITT
Gallium Arsenide Technology Center (GTC) to determine
accurate linear-type models for class-B power FET’s which
are used to design MMIC power amplifiers. A similar
technique has been employed successfully at GTC to de-
sign class-A power MMIC amplifiers [1]. The model is
derived from I-V characteristics, small-signal S parame-
ters measured at 5, 25, and 50 percent of Ig. and
load-pull contour data at the operating drain-source volt-
age and frequencies. An equivalent lumped-element model
for the 2.5 mm FET biased at V¢ =12 V is shown in Fig.
1. This model is directly used to design matching networks
for maximum efficiency of an MMIC amplifier operating
in class-B mode.

III. 1.5 W POWER AMPLIFIER DESIGN .

The push-pull configuration has been extensively nsed
for class-B power amplifiers at low frequencies. However,
at microwave frequencies low-loss transformers (baluns)
for push—pull amplifiers are required to cancel the second
harmonic, which is generated when the FET’s are biased
near pinch-off. Because power MMIC amplifiers must be
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Fig. 1. Lumped-element model for a 2.5 mm class-B power FET.

fabricated on very thin substrates for good thermal dissi-
pation, it is almost impossible to realize these transformers
with less than 1 dB insertion loss, since the component loss
is inversely proportional to substrate thickness. A trans-
former with 1 dB loss will lower the PAE of a push—pull
amplifier by 20 percent. Therefore, the push—pull configu-
ration was not utilized for narrow-band power amplifier
designs for our high-efficiency applications. Keeping in
mind all the possible limitations, we selected a single-ended
class-B amplifier design.

The single-ended class-B amplifier design consists of the
reactive termination of higher order harmonics. Two RF
bypass capacitor terminated short-circuited stubs (A /4
and A /6 at band center frequency) connected at the drain
location reactively short the second and third harmonics to
increase the overall efficiency of the circuit [10], [11]. The
short-circuited quarter-wavelength stub does not affect the
fundamental frequency performance. However, at twice
the fundamental frequency, the line becomes A /2 long,
providing low impedance to the second harmonic. The
short-circuited A /6 stub is inductive at the fundamental
frequency and is part of the matching network. At three
times the fundamental frequency, this line becomes A /2
and reactively terminates the third-harmonic component.

The 1.5 W power class-B MMIC design is based on the
design methodology developed at ITT/GTC. The 2.5 mm
FET (Fig. 1) for maximum efficiency is matched to 50 Q
input and output. Both distributed and lumped elements
were used in the matching networks. The elements of the
output matching network were selected for minimum pos-
sible loss with a good match as well as to satisfy electromi-
gration requirements (maximum allowed current density in
the bias lines was 2X10° A /cm?). Capacitors, which were
used for dc blocking, RF bypassing, and matching, were
all of the metal-insulator-metal (MIM) type. The dielec-
tric material used for the capacitors is 2000-A-thick Si;N,.
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Fig. 2. Schematic of 1.5 W class-B MMIC amplifier. All dimensions
n pm.

This provides a capacitance of 300 pF/mm? and a break-
down voltage above 30 V. The tolerance in capacitance is
+5 percent. Large RF bypass capacitors as well as resis-
tive gate bias were used for amplifier stabilization at low
frequency. The drain bias is applied through a short-cir-
cuited stub which is also a part of the output matching
network. The amplifier design was optimized over the 5-6
GHz frequency. A schematic of the amplifier is shown in
Fig. 2.

IV. FABRICATION

The class-B power IC’s reported in this paper are fabri-
cated using the refractory metal, multifunctional self-
aligned gate (MSAG) MMIC process developed at
ITT /GTC. The process flow diagram is shown in Fig. 3
and a detailed description of the process is given in [12].
Some of the key features of the process are as follows:

¢ Since the FET I, is determined by implantation
rather than gate recess, [,g¢ uniformity is remarkably
improved. Typical uniformity is better than 5 percent.

® Gate—source resistance is minimized using an n™* im-
plant which aligns itself to the gate. FET performance
is reasonably insensitive to gate location, resulting in
excellent photolithography tolerance.

® The Schottky metal is titanium-nitride (TiIWN), an
extremely good gold diffusion barrier. Given that the
Schottky survives an 825°C anneal, it is unlikely to
fail at less than 300°C.

* The gate parasitic resistance is reduced to a very low
level using gold overlay metal which is isolated from
the GaAs surface by silicon nitride dielectric and the
TiWN Schottky.

® The n* on the drain side is moved away from the gate
to maintain high gate—drain breakdown voltage and
high output resistance.

The devices reported here employ coimplantation of
n-type (Si) and p-type (Mg) impurity ions in their active
regions. This was done in order to increase the FET
transconductance, especially near pinch-off bias, by in-
creasing the abruptness of the charge density profile, and
to increase carrier confinement, and hence breakdown
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Fig. 3. MSAG FET fabrication process flow diagram.

Fig. 4. Photograph of the 1.5 W class-B power\MMIC amplifier (chip
size = 4.8 mn?).

voltage, by generating a p—n junction at the channel-sub-
strate interface.

The process includes Au/Ge/Ni metallization for ohmic
contacts, 0.5 pm TiWN Schottky barrier gates, and ion-
implanted resistors. The 0.5 pm TiWN gates are covered
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Fig. 6. Typical measured dc data for a 300 pm class-B power FET.

by a 0.8 pm overlay after planarization. Silicon nitride is
used for both capacitors and passivation. The air bridges,
microstrip lines, and bonding pads are S-pm-thick plated
gold. The wafer is lapped to its final thickness of 75 pm,
and back side via holes are then etched and plated. A
photograph of the chip is shown in Fig. 4. The measured
functional on-wafer yield for four wafers in a lot is plotted
in Fig. 5. (This is a low-power screening test.)

V. TEeST RESULTS

Fig. 6 shows the dc characteristics of a 300 pm FET
tested on the wafer. The typical I is' 80 mA, and the
pinch-off voltage is —2 V. At pinch-off the gate—drain
breakdown voltage (defined as I;, > 1 mA/mm) is



1318
40 80
3
30 - FUNDAMENTAL PRaEl N {70
EFFICIENCY \\
/ k <3
20~ » \ e £
- ’ \ Q
rg 7/ z
g , \ &
= 1255 GHz \ [}
/ i
g Vpg = 12V / \ &
810  Ves=-25V , \ 50 g
5 ‘ SECOND HARMONIC @~ LI
: ) i Ssant i
w
°© ! Pt ¢ 3
ol / o ! a0 &
/ // THIAD HARMONIC  \
/ - [
// A/
/ //O
10 = ¥ r's — 30
/ < (/
o
ad
V3

7 | ] | ]
0 15 20 25 30
INPUT POWER (dBm)
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power added efficiency versus input power of a 1.5 W class-B MMIC
amplifier.
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Fig 8. Power output, gain, and efficiency versus drain—source voltage

approximately 23 V. At half I ,¢¢, the dc transconductance
is 40 mS (133 mS/mm).

Several 1.5 W amplifiers were assembled on 0.5 x 0.5 in?
Elkonite (Cu—W) carriers. Elkonite material (a standard
material for MMIC packages as well as for carriers at
GTC) was chosen for its good thermal conductivity and
good thermal expansion match to GaAs and alumina.

Typical measured characteristics for the IC are plotted
in Fig. 7 as a function of input power at 5.5 GHz (center
frequency of the 5-6 GHz design band). The amplifier has
about 1.7 W power output, 8 dB gain, and 70 percent
PAE. The second- and third-harmonic levels were below
~26 dBc and —28 dBc, respectively. Figs. 8 and 9 depict
power output, gain, and efficiency as functions of V¢ and
Vs, respectively. These plots show that GTC’s class-B
amplifier chips exhibit more than 60 percent PAE over a
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large range of bias voltages. At maximum efficiency, power
output and input power as a function of frequency are
shown in Fig. 10. The variations of input and output
return loss are plotted in Fig. 11. Over the design band the
return loss was better than 10 dB. The measured group
delay of the amplifier was 0.2 ns.

The noise figure of the class-B amplifier was measured
when biased at 20 percent of [, . Noise figure and
small-signal gain as a function of frequency are plotted in
Fig. 12. The noise figure was less than 3.5 dB over the 5-6
GHz band. Also, the spectrum of a frequency synthesizer
signal and the amplified signal by the class-B power ampli-
fier chip were measured and are shown in Fig. 13. It may
be noted that the phase noise contribution by the amplifier
is negligible. The measured AM to PM conversion was less
than 1°/dB up to 20 dBm input power and less than
3°/dB up to 25 dBm input power.

Table 1 summarizes the measured performance versus
design goals for GTC’s class-B power amplifiers. At GTC
we have demonstrated state-of-the-art performance for
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TABLE I

SUMMARY OF MEASURED RESULTS FOR CLASS B MMIC AMPLIFIERS

r .

: Parameter Goals Measured
Frequency {(GHz) 5-6 5-6

| Power Output (W), min. 1.5 1.7
Po/mm (W/mm) 0.6 | 0.7
Gain {dB), min. 8.0 8.0
Efficiency (%), min, 50 70
VSWR, Max. | 2:1 2:1
IInd Harmonic level (dBc), max. -20 -26
11Ird Harmonic level (dBc}, max. -20 -28

class-B power amplifier MMIC’s. This excellent perfor-
mance is atiributed to a new IC design method, simple
circuit topology, second- and third-harmonic termination
at the drain location, and high-yield, high-performance
MSAG processing.

VI

A fully monolithic C-band class-B power amplifier with
70 percent PAE, 8 dB gain, and 1.7 W power output
fabricated using the ITT MSAG process (refractory self-
aligned gate technology) is demonstrated. The IC’s exhib-
ited excellent performance, including —26 and —28 dBc
second- and third-harmonic levels at the maximum effi-
ciency, clearly demonstrating the importance of careful
harmonic termination.

CONCLUSIONS
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